Back to Search Start Over

The impact of well drawdowns on the mixing process of river water and groundwater and water quality in a riverside well field, Northeast China.

Authors :
Zhu, Yaguang
Zhai, Yuanzheng
Du, Qingqing
Teng, Yanguo
Wang, Jinsheng
Yang, Guang
Source :
Hydrological Processes; Mar2019, Vol. 33 Issue 6, p945-961, 17p
Publication Year :
2019

Abstract

Riverbank filtration (RBF) has been widely used throughout the world as an effective means to regulate surface water and groundwater resources and pretreat raw water for municipal water supply. The quality of the water from a riverside well field and the mixing ratios of surface water and groundwater is primarily impacted by the hydrodynamic processes in the RBF system. The RBF system is largely controlled by the water exploiting system in addition to the natural hydrologic condition of the river–aquifer system. As one of the most important design parameters of the riverside well field, the drawdown of groundwater level greatly determines the water head differences between the river water and groundwater as well as the field flow net, which subsequently impacts the mixing of river water and groundwater and water quality significantly. This study aimed to improve the understanding of the mixing process between the surface water and groundwater and estimate the impact of the RBF on the mixing ratio of surface water–groundwater and water quality quantitatively. A set of field pumping tests with various groundwater level drawdowns were carried out independently and successively at a riverside field with a single pumping well near the Songhua River in Northeast China in August 2017. During these tests, the water levels and hydrochemical parameters of the Songhua River, the adjacent aquifer, and the pumping well were monitored. The dynamic mixing process of the river water and groundwater and water quality under various drawdown conditions were analysed systematically using analytical methods. The results obtained from Dupuit method and the Mirror Image method in conjunction with the Hydrochemical Tracing method showed that the pumping water directly from the river water reached 60% ± 10% after a steady flow net was established. The larger the proportion of the pumping water captured from the river, the better quality of the pumping water was, because the quality of the river water (only limited to some water quality parameters monitored which were minority) was better than that of the groundwater. The results also showed that total Fe, TDS, total hardness, CODMn, and K+ were relatively sensitive to the changes of groundwater drawdown, and their concentrations decreased with an increase in the groundwater drawdown. It can be concluded that both the mixing ratio of the surface water and the groundwater and the water quality of the riverside well field can be regulated through adjusting the designed drawdown of the groundwater level, which is helpful for the design and the optimization of the riverside well water intake engineering. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08856087
Volume :
33
Issue :
6
Database :
Complementary Index
Journal :
Hydrological Processes
Publication Type :
Academic Journal
Accession number :
135110915
Full Text :
https://doi.org/10.1002/hyp.13376