Back to Search Start Over

Electrical properties of Ba[(M1/20Ta1/20)Ti9/10]O3 with M = Sc3+, Cr3+, Mn3+, or Fe3+ & Ba[(M1/30Ta2/30)Ti9/10]O3 with M = Mn2+, Ni2+, or Cu2+

Authors :
Liao, YuHsun
Veerapandiyan, V. K.
Schulze, Walter A.
Pilgram, Steven M.
Tidrow, Steven C.
Source :
Ferroelectrics; 2018, Vol. 533 Issue 1, p151-164, 14p
Publication Year :
2018

Abstract

A grand challenge with regard to multilayer ceramic capacitor (MLCC) technology is to simultaneously increase permittivity, material break-down strength and resistivity, while reducing material dissipation loss, and temperature sensitivity of permittivity, using reasonably environmentally friendly constituents. Dipole-like substituted barium titanate (BaTiO<subscript>3</subscript>), Ba[(M<subscript>1/20</subscript>Ta<subscript>1/20</subscript>)Ti<subscript>9/10</subscript>]O<subscript>3</subscript> where M is a trivalent ion, Sc<superscript>3+</superscript>, Cr<superscript>3+</superscript>, Mn<superscript>3+</superscript>, or Fe<superscript>3+</superscript>, and more complicated electric-field interaction materials, Ba[(M<subscript>1/30</subscript>Ta<subscript>2/30</subscript>)Ti<subscript>9/10</subscript>]O<subscript>3</subscript> where M is a divalent ion, Mn<superscript>2+</superscript>, Ni<superscript>2+</superscript>, or Cu<superscript>2+</superscript>, are investigated as potential candidate materials for MLCC technology. Measured temperature dependent, 273 K to 1173 K, electrical conductivity of Ba[(M<subscript>1/20</subscript>Ta<subscript>1/20</subscript>) Ti<subscript>9/10</subscript>]O<subscript>3</subscript> and Ba[(M<subscript>1/30</subscript>Ta<subscript>2/30</subscript>)Ti<subscript>9/10</subscript>]O<subscript>3</subscript> are reported. The dipole-like substituted materials, Ba[(M<subscript>1/20</subscript>Ta<subscript>1/20</subscript>)Ti<subscript>9/10</subscript>]O<subscript>3</subscript>, possess activation energies ranging from 2.02 to 2.40 eV and are nearly independent of the M<superscript>3+</superscript> ion utilized. More complicated electric-field interaction materials, Ba[(M<subscript>1/30</subscript>Ta<subscript>2/30</subscript>)Ti<subscript>9/10</subscript>]O<subscript>3</subscript> possess activation energies ranging from 2.50 to 2.61 eV and are nearly independent of the M<superscript>2+</superscript> ion utilized. The results suggest that the introduction of stronger dipole-like electric fields increase the activation energy of the matrix compared to BaTiO<subscript>3</subscript>. Hence, dipole-like substituted materials, Ba[(M<subscript>1/20</subscript>Ta<subscript>1/20</subscript>)Ti<subscript>9/10</subscript>] O<subscript>3</subscript>, and more complicated electric-field interaction materials, Ba[(M<subscript>1/30</subscript>Ta<subscript>2/30</subscript>) Ti<subscript>9/10</subscript>] O<subscript>3</subscript>, which can be used to significantly and controllable tailor the activation energy of BaTiO<subscript>3</subscript> based materials, remain of interest for MLLC technology. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00150193
Volume :
533
Issue :
1
Database :
Complementary Index
Journal :
Ferroelectrics
Publication Type :
Academic Journal
Accession number :
134996016
Full Text :
https://doi.org/10.1080/00150193.2018.1470832