Back to Search
Start Over
Network-guided prediction of aromatase inhibitor response in breast cancer.
- Source :
- PLoS Computational Biology; 2/11/2019, Vol. 15 Issue 2, p1-19, 19p, 1 Diagram, 4 Graphs
- Publication Year :
- 2019
-
Abstract
- Prediction of response to specific cancer treatments is complicated by significant heterogeneity between tumors in terms of mutational profiles, gene expression, and clinical measures. Here we focus on the response of Estrogen Receptor (ER)+ post-menopausal breast cancer tumors to aromatase inhibitors (AI). We use a network smoothing algorithm to learn novel features that integrate several types of high throughput data and new cell line experiments. These features greatly improve the ability to predict response to AI when compared to prior methods. For a subset of the patients, for which we obtained more detailed clinical information, we can further predict response to a specific AI drug. [ABSTRACT FROM AUTHOR]
- Subjects :
- BREAST cancer
AROMATASE inhibitors
CANCER treatment
TUMORS
CELL lines
Subjects
Details
- Language :
- English
- ISSN :
- 1553734X
- Volume :
- 15
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- PLoS Computational Biology
- Publication Type :
- Academic Journal
- Accession number :
- 134634334
- Full Text :
- https://doi.org/10.1371/journal.pcbi.1006730