Back to Search
Start Over
Feature Extraction With Multiscale Covariance Maps for Hyperspectral Image Classification.
- Source :
- IEEE Transactions on Geoscience & Remote Sensing; Feb2019, Vol. 57 Issue 2, p755-769, 15p
- Publication Year :
- 2019
-
Abstract
- The classification of hyperspectral images (HSIs) using convolutional neural networks (CNNs) has recently drawn significant attention. However, it is important to address the potential overfitting problems that CNN-based methods suffer when dealing with HSIs. Unlike common natural images, HSIs are essentially three-order tensors which contain two spatial dimensions and one spectral dimension. As a result, exploiting both spatial and spectral information is very important for HSI classification. This paper proposes a new hand-crafted feature extraction method, based on multiscale covariance maps (MCMs), that is specifically aimed at improving the classification of HSIs using CNNs. The proposed method has the following distinctive advantages. First, with the use of covariance maps, the spatial and spectral information of the HSI can be jointly exploited. Each entry in the covariance map stands for the covariance between two different spectral bands within a local spatial window, which can absorb and integrate the two kinds of information (spatial and spectral) in a natural way. Second, by means of our multiscale strategy, each sample can be enhanced with spatial information from different scales, increasing the information conveyed by training samples significantly. To verify the effectiveness of our proposed method, we conduct comprehensive experiments on three widely used hyperspectral data sets, using a classical 2-D CNN (2DCNN) model. Our experimental results demonstrate that the proposed method can indeed increase the robustness of the CNN model. Moreover, the proposed MCMs+2DCNN method exhibits better classification performance than other CNN-based classification strategies and several standard techniques for spectral-spatial classification of HSIs. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 01962892
- Volume :
- 57
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Geoscience & Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 134552061
- Full Text :
- https://doi.org/10.1109/TGRS.2018.2860464