Back to Search Start Over

Feynman diagram description of 2D-Raman-THz spectroscopy applied to water.

Authors :
Sidler, David
Hamm, Peter
Source :
Journal of Chemical Physics; 1/28/2019, Vol. 150 Issue 4, pN.PAG-N.PAG, 13p, 4 Diagrams, 2 Charts, 8 Graphs
Publication Year :
2019

Abstract

2D-Raman-THz spectroscopy of liquid water, which has been presented recently [J. Savolainen et al., Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)], directly probes the intermolecular degrees of freedom of the hydrogen-bond network. However, being a relatively new technique, its information content is not fully explored to date. While the spectroscopic signal can be simulated based on molecular dynamics simulation in connection with a water force field, it is difficult to relate spectroscopic signatures to the underlying microscopic features of the force field. Here, a completely different approach is taken that starts from an as simple as possible model, i.e., a single vibrational mode with electrical and mechanical anharmonicity augmented with homogeneous and inhomogeneous broadening. An intuitive Feynman diagram picture is developed for all possible pulse sequences of hybrid 2D-Raman-THz spectroscopy. It is shown that the model can explain the experimental data essentially quantitatively with a very small set of parameters, and it is tentatively concluded that the experimental signal originates from the hydrogen-bond stretching vibration around 170 cm<superscript>−1</superscript>. Furthermore, the echo observed in the experimental data can be quantified by fitting the model. A dominant fraction of its linewidth is attributed to quasi-inhomogeneous broadening in the slow-modulation limit with a correlation time of 370 fs, reflecting the lifetime of the hydrogen-bond networks giving rise to the absorption band. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
150
Issue :
4
Database :
Complementary Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
134425266
Full Text :
https://doi.org/10.1063/1.5079497