Back to Search Start Over

Understanding the disease genome: gene essentiality and the interplay of selection, recombination and mutation.

Authors :
Pengelly, Reuben J
Vergara-Lope, Alejandra
Alyousfi, Dareen
Jabalameli, M Reza
Collins, Andrew
Source :
Briefings in Bioinformatics; Jan2019, Vol. 20 Issue 1, p267-273, 7p
Publication Year :
2019

Abstract

Despite the identification of many genetic variants contributing to human disease (the 'disease genome'), establishing reliable molecular diagnoses remain challenging in many cases. The ability to sequence the genomes of patients has been transformative, but difficulty in interpretation of voluminous genetic variation often confounds recognition of underlying causal variants. There are numerous predictors of pathogenicity for individual DNA variants, but their utility is reduced because many plausibly pathogenic variants are probably neutral. The rapidly increasing quantity and quality of information on the properties of genes suggests that gene-specific information might be useful for prediction of causal variation when used alongside variant-specific predictors of pathogenicity. The key to understanding the role of genes in disease relates in part to gene essentiality, which has recently been approximated, for example, by quantifying the degree of intolerance of individual genes to loss-of-function variation. Increasing understanding of the interplay between genetic recombination, selection and mutation and their relationship to gene essentiality suggests that gene-specific information may be useful for the interpretation of sequenced genomes. Considered alongside additional distinctive properties of the disease genome, such as the timing of the evolutionary emergence of genes and the roles of their products in protein networks, the case for using gene-specific measures to guide filtering of sequenced genomes seems strong. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14675463
Volume :
20
Issue :
1
Database :
Complementary Index
Journal :
Briefings in Bioinformatics
Publication Type :
Academic Journal
Accession number :
134213727
Full Text :
https://doi.org/10.1093/bib/bbx110