Back to Search
Start Over
Deep learning image recognition enables efficient genome editing in zebrafish by automated injections.
- Source :
- PLoS ONE; 1/7/2019, Vol. 14 Issue 01, p1-18, 18p
- Publication Year :
- 2019
-
Abstract
- One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish eggs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93%. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 μm to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 milliseconds. We first tested our system by injecting a morpholino into the middle of the yolk and found that the automated injection efficiency is as efficient as manual injection (~ 80%). Next, we tested both CRISPR/Cas9 and DNA construct injections into the zygote and obtained a comparable efficiency to that of an experienced experimentalist. Combined with a higher throughput, this results in a higher yield. Hence, the automated injection of CRISPR/Cas9 will allow high-throughput applications to knock out and knock in relevant genes to study their mechanisms or pathways of interest in diverse areas of biomedical research. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 14
- Issue :
- 01
- Database :
- Complementary Index
- Journal :
- PLoS ONE
- Publication Type :
- Academic Journal
- Accession number :
- 133962229
- Full Text :
- https://doi.org/10.1371/journal.pone.0202377