Back to Search
Start Over
Convergence to diffusion waves for solutions of Euler equations with time-depending damping on quadrant.
- Source :
- SCIENCE CHINA Mathematics; Jan2019, Vol. 62 Issue 1, p33-62, 30p
- Publication Year :
- 2019
-
Abstract
- This paper is concerned with the asymptotic behavior of the solution to the Euler equations with time-depending damping on quadrant (x, t) ∈ ℝ<superscript>+</superscript> × ℝ<superscript>+</superscript>, ∂tv−∂xu=0,∂tu+∂xp(v)=−α(1+t)λu,, with the null-Dirichlet boundary condition or the null-Neumann boundary condition on u. We show that the corresponding initial-boundary value problem admits a unique global smooth solution which tends time- asymptotically to the nonlinear diffusion wave. Compared with the previous work about Euler equations with constant coefficient damping, studied by Nishihara and Yang (1999), and Jiang and Zhu (2009, Discrete Contin Dyn Syst), we obtain a general result when the initial perturbation belongs to the same space. In addition, our main novelty lies in the fact that the cut-off points of the convergence rates are different from our previous result about the Cauchy problem. Our proof is based on the classical energy method and the analyses of the nonlinear diffusion wave. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16747283
- Volume :
- 62
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- SCIENCE CHINA Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 133898187
- Full Text :
- https://doi.org/10.1007/s11425-017-9271-x