Back to Search Start Over

Parametric Sensitivity and Uncertainty Quantification in the Version 1 of E3SM Atmosphere Model Based on Short Perturbed Parameter Ensemble Simulations.

Authors :
Qian, Yun
Wan, Hui
Yang, Ben
Golaz, Jean‐Christophe
Harrop, Bryce
Hou, Zhangshuan
Larson, Vincent E.
Leung, L. Ruby
Lin, Guangxing
Lin, Wuyin
Ma, Po‐Lun
Ma, Hsi‐Yen
Rasch, Phil
Singh, Balwinder
Wang, Hailong
Xie, Shaocheng
Zhang, Kai
Source :
Journal of Geophysical Research. Atmospheres; 12/16/2018, Vol. 123 Issue 23, p13,046-13,073, 1p
Publication Year :
2018

Abstract

The atmospheric component of Energy Exascale Earth System Model version 1 has included many new features in the physics parameterizations compared to its predecessors. Potential complex nonlinear interactions among the new features create a significant challenge for understanding the model behaviors and parameter tuning. Using the one‐at‐a‐time method, the benefit of tuning one parameter may offset the benefit of tuning another parameter, or improvement in one target variable may lead to degradation in another target variable. To better understand the Energy Exascale Earth System Model version 1 model behaviors and physics, we conducted a large number of short simulations (three days) in which 18 parameters carefully selected from parameterizations of deep convection, shallow convection, and cloud macrophysics and microphysics were perturbed simultaneously using the Latin hypercube sampling method. From the perturbed parameter ensemble simulations and use of different skill score functions, we identified the most sensitive parameters, quantified how the model responds to changes of the parameters for both global mean and spatial distribution, and estimated the maximum likelihood of model parameter space for a number of important fidelity metrics. Comparison of the parametric sensitivity using simulations of two different lengths suggests that perturbed parameter ensemble using short simulations has some bearing on understanding parametric sensitivity of longer simulations. Results from this analysis provide a more comprehensive picture of the Energy Exascale Earth System Model version 1 behavior. The difficulty in reducing biases in multiple variables simultaneously highlights the need of characterizing model structural uncertainty (so‐called embedded errors) to inform future development efforts. Key Points: Short PPE simulations provide a comprehensive picture of the behaviors of a new Earth system model associated with uncertain parametersPPE using short simulations has some bearing on understanding parametric sensitivity of longer simulationsThe difficulty in reducing biases in multiple variables simultaneously highlights the need of characterizing model embedded errors [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2169897X
Volume :
123
Issue :
23
Database :
Complementary Index
Journal :
Journal of Geophysical Research. Atmospheres
Publication Type :
Academic Journal
Accession number :
133739803
Full Text :
https://doi.org/10.1029/2018JD028927