Back to Search Start Over

Vascular plant species richness and bioindication predict multi‐taxon species richness.

Authors :
Brunbjerg, Ane Kirstine
Bruun, Hans Henrik
Dalby, Lars
Fløjgaard, Camilla
Frøslev, Tobias G.
Høye, Toke T.
Goldberg, Irina
Læssøe, Thomas
Hansen, Morten D. D.
Brøndum, Lars
Skipper, Lars
Fog, Kåre
Ejrnæs, Rasmus
Bacon, Karen
Source :
Methods in Ecology & Evolution; Dec2018, Vol. 9 Issue 12, p2372-2382, 11p
Publication Year :
2018

Abstract

Plants regulate soils and microclimate, provide substrate for heterotrophic taxa, are easy to observe and identify and have a stable taxonomy, which strongly justifies their use as indicators in monitoring and conservation. However, there is no consensus as to whether plants are strong predictors of total multi‐taxon species richness. In this study, we investigate if general terrestrial species richness can be predicted by vascular plant richness and bioindication.To answer this question, we collected an extensive dataset on species richness of vascular plants, bryophytes, macrofungi, lichens, plant‐galling arthropods, gastropods, spiders, carabid beetles, hoverflies, and genetic richness (operational taxonomic units = OTUs) from environmental DNA metabarcoding. We also constructed a Conservation Index based on threatened red list species. Besides using richness of vascular plants for prediction of other taxonomic groups, we also used plant‐derived calibration of the abiotic environment (moisture, soil fertility and light conditions) as well as the degree of anthropogenic impact.Bivariate relationships between plant species richness and other species groups showed no consistent pattern. After taking environmental calibration by bioindication into account, we found a consistent, and for most groups significant, positive effect of plant richness. Plant species richness was also important for richness of fungal OTUs, Malaise OTUs and for the Conservation Index. Our multiple regression analyses revealed (a) a consistently positive effect of plant richness on other taxa, (b) prediction of 12%–55% of variation in other taxa and 48% of variation in the total species richness when bioindication and plant richness were used as predictors.Our results justify that vascular plants are strong indicators of total biodiversity across environmental gradients and broad taxonomic realms and therefore a natural first choice for biodiversity monitoring and conservation planning. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2041210X
Volume :
9
Issue :
12
Database :
Complementary Index
Journal :
Methods in Ecology & Evolution
Publication Type :
Academic Journal
Accession number :
133559261
Full Text :
https://doi.org/10.1111/2041-210X.13087