Back to Search Start Over

The MUSE Hubble Ultra Deep Field Survey.

Authors :
Boogaard, Leindert A.
Brinchmann, Jarle
Bouché, Nicolas
Paalvast, Mieke
Bacon, Roland
Bouwens, Rychard J.
Contini, Thierry
Gunawardhana, Madusha L. P.
Inami, Hanae
Marino, Raffaella A.
Maseda, Michael V.
Mitchell, Peter
Nanayakkara, Themiya
Richard, Johan
Schaye, Joop
Schreiber, Corentin
Tacchella, Sandro
Wisotzki, Lutz
Zabl, Johannes
Source :
Astronomy & Astrophysics / Astronomie et Astrophysique; Nov2018, Vol. 619, pN.PAG-N.PAG, 20p
Publication Year :
2018

Abstract

Star-forming galaxies have been found to follow a relatively tight relation between stellar mass (M<subscript>*</subscript>) and star formation rate (SFR), dubbed the "star formation sequence". A turnover in the sequence has been observed, where galaxies with M<subscript>*</subscript> <  10<superscript>10</superscript> M<subscript>⊙</subscript> follow a steeper relation than their higher mass counterparts, suggesting that the low-mass slope is (nearly) linear. In this paper, we characterise the properties of the low-mass end of the star formation sequence between 7 ≤ log M<subscript>*</subscript>[M<subscript>⊙</subscript>]  ≤  10.5 at redshift 0.11 <  z  <   0.91. We use the deepest MUSE observations of the Hubble Ultra Deep Field and the Hubble Deep Field South to construct a sample of 179 star-forming galaxies with high signal-to-noise emission lines. Dust-corrected SFRs are determined from Hβ λ4861 and Hα λ6563. We model the star formation sequence with a Gaussian distribution around a hyperplane between logM<subscript>*</subscript>, logSFR, and log(1 + z), to simultaneously constrain the slope, redshift evolution, and intrinsic scatter. We find a sub-linear slope for the low-mass regime where log SFR [M<subscript>⊙</subscript>yr<superscript>−1</superscript>] = 0.83<superscript>+0.07</superscript><subscript>−0.06</subscript> log M<subscript>*</subscript>[M<subscript>⊙</subscript>]+1.74<superscript>+0.66</superscript><subscript>−0.68</subscript> log(1 + z) log SFR [ M ⊙ yr − 1 ] = 0. 83 − 0.06 + 0.07 log M ∗ [ M ⊙ ] + 1. 74 − 0.68 + 0.66 log (1 + z) $ \log \text{ SFR}[M_{\odot}\,{\mathrm{yr}}^{-1}] = 0.83^{+0.07}_{-0.06}\log{M_{*}}[M_{\odot}] + {1.74^{+0.66}_{-0.68}}{\log (1+z)} $ , increasing with redshift. We recover an intrinsic scatter in the relation of σ<subscript>intr</subscript> = 0.44<superscript>+0.05</superscript><subscript>−0.04</subscript> σ intr = 0. 44 − 0.04 + 0.05 $ \sigma_{\text{ intr}}={0.44^{+0.05}_{-0.04}} $ , dex, larger than typically found at higher masses. As both hydrodynamical simulations and (semi-)analytical models typically favour a steeper slope in the low-mass regime, our results provide new constraints on the feedback processes which operate preferentially in low-mass halos. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00046361
Volume :
619
Database :
Complementary Index
Journal :
Astronomy & Astrophysics / Astronomie et Astrophysique
Publication Type :
Academic Journal
Accession number :
133259775
Full Text :
https://doi.org/10.1051/0004-6361/201833136