Back to Search
Start Over
Influence of Arctic Stratospheric Ozone on Surface Climate in CCMI models.
- Source :
- Atmospheric Chemistry & Physics Discussions; 2018, p1-20, 20p
- Publication Year :
- 2018
-
Abstract
- The Northern Hemisphere and tropical circulation response to interannual variability in Arctic stratospheric ozone is analyzed in a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models simulate a connection between ozone variability and temperature/geopotential height in the lower stratosphere similar to that observed. A connection between Arctic ozone variability and polar cap sea-level pressure is also found, but additional analysis suggests that it is mediated by the dynamical variability that typically drives the anomalous ozone concentrations. The CCMI models also show a connection between Arctic stratospheric ozone and the El Nino Southern Oscillation (ENSO): the CCMI models show a tendency of Arctic stratospheric ozone variability to lead ENSO variability one to two years later. While this effect is much weaker than that observed, it is still statistically significant. Overall, Arctic stratospheric ozone is related to lower stratospheric variability and may also influence the surface in both polar and tropical latitudes, though these impacts can be masked by internal variability if data is only available for ~ 40 years. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16807367
- Database :
- Complementary Index
- Journal :
- Atmospheric Chemistry & Physics Discussions
- Publication Type :
- Academic Journal
- Accession number :
- 132805291
- Full Text :
- https://doi.org/10.5194/acp-2018-1031