Back to Search
Start Over
U-Pb isotopic dating of titanite microstructures: potential implications for the chronology and identification of large impact structures.
- Source :
- Contributions to Mineralogy & Petrology; Oct2018, Vol. 173 Issue 10, p1-1, 1p
- Publication Year :
- 2018
-
Abstract
- Identifying and dating large impact structures is challenging, as many of the traditional shock indicator phases can be modified by post-impact processes. Refractory accessory phases, such as zircon, while faithful recorders of shock wave passage, commonly respond with partial U-Pb age resetting during impact events. Titanite is an accessory phase with lower Pb closure temperature than many other robust chronometers, but its potential as indicator and chronometer of impact-related processes remains poorly constrained. In this study, we examined titanite grains from the Sudbury (Ontario, Canada) and Vredefort (South Africa) impact structures, combining quantitative microstructural and U-Pb dating techniques. Titanite grains from both craters host planar microstructures and microtwins that show a common twin-host disorientation relationship of 74° about <102>. In the Vredefort impact structure, the microtwins deformed internally and developed high- and low-angle grain boundaries that resulted in the growth of neoblastic crystallites. U-Pb isotopic dating of magmatic titanite grains with deformation microtwins from the Sudbury impact structure yielded a <superscript>207</superscript>Pb/<superscript>206</superscript>Pb age of 1851 ± 12 Ma that records either the shock heating or the crater modification stage of the impact event. The titanite grains from the Vredefort impact structure yielded primarily pre-impact ages recording the cooling of the ultra-high-temperature Ventersdorp event, but domains with microtwins or planar microstructures show evidence of U-Pb isotopic disturbance. Despite that the identified microtwins are not diagnostic of shock-metamorphic processes, our contribution demonstrates that titanite has great potential to inform studies of the terrestrial impact crater record. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00107999
- Volume :
- 173
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Contributions to Mineralogy & Petrology
- Publication Type :
- Academic Journal
- Accession number :
- 132698587
- Full Text :
- https://doi.org/10.1007/s00410-018-1511-0