Back to Search
Start Over
Search for high-mass protostars with ALMA revealed up to kilo-parsec scales (SPARKS).
- Source :
- Astronomy & Astrophysics / Astronomie et Astrophysique; Sep2018, Vol. 617, pN.PAG-N.PAG, 17p
- Publication Year :
- 2018
-
Abstract
- The conditions leading to the formation of the most massive O-type stars are still an enigma in modern astrophysics. To assess the physical conditions of high-mass protostars in their main accretion phase, here we present a case study of a young massive clump selected from the ATLASGAL survey, G328.2551–0.5321. The source exhibits a bolometric luminosity of 1.3 × 10<superscript>4</superscript>L<subscript>⊙</subscript>, which allows us to estimate that its current protostellar mass lies between ~11 and 16 M<subscript>⊙</subscript>. We show high angular resolution observations with ALMA that reach a physical scale of ~400 au. To reveal the structure of this high-mass protostellar envelope in detail at a ~0.17′′ resolution, we used the thermal dust continuum emission and spectroscopic information, amongst others from the CO (J = 3–2) line, which is sensitive to the high-velocity molecular outflow of the source. We also used the SiO (J = 8–7) and SO<subscript>2</subscript> (J = 8<subscript>2,6</subscript> − 7<subscript>1,7</subscript>) lines, which trace shocks along the outflow, as well as several CH<subscript>3</subscript>OH and HC<subscript>3</subscript>N lines that probe the gas of the inner envelope in the closest vicinity of the protostar. Our observations of the dust continuum emission reveal a single high-mass protostellar envelope, down to our resolution limit. We find evidence for a compact, marginally resolved continuum source that is surrounded by azimuthal elongations that could be consistent with a spiral pattern. We also report on the detection of a rotational line of CH<subscript>3</subscript>OH within its v<subscript>t</subscript> = 1 torsionally excited state. This shows two bright emission peaks that are spatially offset from the dust continuum peak and exhibit a distinct velocity component ±4.5 km s<superscript>−1</superscript> offset from the systemic velocity of the source. Rotational diagram analysis and models based on local thermodynamic equilibrium assumption require high CH<subscript>3</subscript>OH column densities that reach N(CH<subscript>3</subscript>OH) = 1.2−2 × 10<superscript>19</superscript> cm<superscript>−2</superscript>, and kinetic temperatures of the order of 160–200 K at the position of these peaks. A comparison of their morphology and kinematics with those of the outflow component of the CO line and the SO<subscript>2</subscript> line suggests that the high-excitation CH<subscript>3</subscript>OH spots are associated with the innermost regions of the envelope. While the HC<subscript>3</subscript>N v<subscript>7</subscript> = 0 (J = 37–36) line is also detected in the outflow, the HC<subscript>3</subscript>N v<subscript>7</subscript> = 1e (J = 38–37) rotational transition within the first vibrationally excited state of the molecule shows a compact morphology. We find that the velocity shifts at the position of the observed high-excitation CH<subscript>3</subscript> OH spots correspond well to the expected Keplerian velocity around a central object with 15 M<subscript>⊙</subscript> consistent with the mass estimate based on the bolometric luminosity of the source. We propose a picture where the CH<subscript>3</subscript> OH emission peaks trace the accretion shocks around the centrifugal barrier, pinpointing the interaction region between the collapsing envelope and an accretion disc. The physical properties of the accretion disc inferred from these observations suggest a specific angular momentum several times higher than typically observed towards low-mass protostars. This is consistent with a scenario of global collapse setting on at larger scales that could carry a more significant amount of kinetic energy compared to the core-collapse models of low-mass star formation. Furthermore, our results suggest that vibrationally excited HC<subscript>3</subscript> N emission could be a new tracer for compact accretion discs around high-mass protostars. [ABSTRACT FROM AUTHOR]
- Subjects :
- PROTOSTARS
SUPERGIANT stars
LUMINOSITY
BOLOMETERS
DUST & the environment
Subjects
Details
- Language :
- English
- ISSN :
- 00046361
- Volume :
- 617
- Database :
- Complementary Index
- Journal :
- Astronomy & Astrophysics / Astronomie et Astrophysique
- Publication Type :
- Academic Journal
- Accession number :
- 132638290
- Full Text :
- https://doi.org/10.1051/0004-6361/201832753