Back to Search
Start Over
Multiplicative inequalities for weighted geometric mean in Hermitian unital Banach ∗-algebras.
- Source :
- Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales / RACSAM; Oct2018, Vol. 112 Issue 4, p1349-1365, 17p
- Publication Year :
- 2018
-
Abstract
- Consider the quadratic weighted geometric meanxⓈνy:=||yx-1|νx|2<graphic></graphic>for invertible elements x,  y in a Hermitian unital Banach ∗<inline-graphic></inline-graphic>-algebra and real number ν<inline-graphic></inline-graphic>. In this paper, by utilizing some results of Tominaga, Furuichi, Liao-Wu-Zhao, Zuo-Shi-Fujii and the author, we obtain various upper and lower bounds for the positive element 1-νx2+νy2<inline-graphic></inline-graphic> in terms of xⓈνy,<inline-graphic></inline-graphic> where ν∈0,1,<inline-graphic></inline-graphic> under various assumptions for the elements x,  y involved. Applications for the classical weighted geometric meana♯νb:=a1/2(a-1/2ba-1/2)νa1/2<graphic></graphic>of positive elements a,  b that satisfy the condition 0<ka≤b≤Ka<inline-graphic></inline-graphic> for certain numbers 0<k<K,<inline-graphic></inline-graphic> are also given. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 15787303
- Volume :
- 112
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales / RACSAM
- Publication Type :
- Periodical
- Accession number :
- 131927617
- Full Text :
- https://doi.org/10.1007/s13398-017-0430-7