Back to Search Start Over

Nano-optical imaging of monolayer MoSe2-WSe2 lateral heterostructure with subwavelength domains.

Authors :
Xue, Wenjin
Liu, Jiru
Zong, Haonan
Sahoo, Prasana K.
Voronine, Dmitri V.
Lai, Xiaoyi
Ambardar, Sharad
Source :
Journal of Vacuum Science & Technology: Part A-Vacuums, Surfaces & Films; Sep2018, Vol. 36 Issue 5, pN.PAG-N.PAG, 7p
Publication Year :
2018

Abstract

Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) are the materials of recent interest to study the spatial confinement of charge carriers, photons, and phonons. Heterostructures based on TMD monolayers, especially composed of Mo and W, form type-II band alignment, and hence, the optically excited carriers can be easily separated for applications pertaining to optoelectronics. Mapping the spatially confined carriers or photons in lateral heterostructures with nanoscale resolution as well as their recombination behavior at the heterointerfaces is necessary for the effective use of 2D materials in optoelectronic devices. Near-field (NF) optical microscopy has been used as a viable route to understand the nanoscale material properties below the diffraction limit. The authors performed tip-enhanced photoluminescence (TEPL) imaging with a spatial resolution of 40 nm of multijunction monolayer MoSe<subscript>2</subscript>-WSe<subscript>2</subscript> lateral heterostructures with subwavelength domains grown by chemical vapor deposition. Monolayer MoSe<subscript>2</subscript> and WSe<subscript>2</subscript> domains were identified by atomic force microscopy (AFM) through the topography and phase mapping. Far-field (FF) and NF techniques were used for the optical imaging of the WSe<subscript>2</subscript> ↔ MoSe<subscript>2</subscript> multijunction heterostructure correlated with AFM phase imaging. Near-field TEPL imaging was able to successfully distinguish the presence of distinct crystalline boundaries across the WSe<subscript>2</subscript> ↔ MoSe<subscript>2</subscript> interfaces in 2D lateral heterostructures with a higher spatial resolution, as compared to the far-field imaging, which failed to resolve the interfaces on one of the crystal sides due to the asymmetric FF excitation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07342101
Volume :
36
Issue :
5
Database :
Complementary Index
Journal :
Journal of Vacuum Science & Technology: Part A-Vacuums, Surfaces & Films
Publication Type :
Academic Journal
Accession number :
131703667
Full Text :
https://doi.org/10.1116/1.5035437