Back to Search Start Over

Turning Stem Cells Bad: Generation of Clinically Relevant Models of Human Acute Myeloid Leukemia through Gene Delivery- or Genome Editing-Based Approaches.

Authors :
Mesuraca, Maria
Chiarella, Emanuela
Scicchitano, Stefania
Aloisio, Annamaria
Montalcini, Ylenia
Bond, Heather M.
Morrone, Giovanni
Lucchino, Valeria
Amodio, Nicola
Codispoti, Bruna
Source :
Molecules; Aug2018, Vol. 23 Issue 8, p2060, 1p, 1 Chart
Publication Year :
2018

Abstract

Acute myeloid leukemia (AML), the most common acute leukemia in the adult, is believed to arise as a consequence of multiple molecular events that confer on primitive hematopoietic progenitors unlimited self-renewal potential and cause defective differentiation. A number of genetic aberrations, among which a variety of gene fusions, have been implicated in the development of a transformed phenotype through the generation of dysfunctional molecules that disrupt key regulatory mechanisms controlling survival, proliferation, and differentiation in normal stem and progenitor cells. Such genetic aberrations can be recreated experimentally to a large extent, to render normal hematopoietic stem cells “bad”, analogous to the leukemic stem cells. Here, we wish to provide a brief outline of the complementary experimental approaches, largely based on gene delivery and more recently on gene editing, employed over the last two decades to gain insights into the molecular mechanisms underlying AML development and progression and on the prospects that their applications offer for the discovery and validation of innovative therapies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
23
Issue :
8
Database :
Complementary Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
131384848
Full Text :
https://doi.org/10.3390/molecules23082060