Back to Search Start Over

Biodegradation of Crude Oil and Corexit 9500 in Arctic Seawater.

Authors :
McFarlin, Kelly M.
Perkins, Matt J.
Field, Jennifer A.
Leigh, Mary B.
Source :
Frontiers in Microbiology; 8/6/2018, pN.PAG-N.PAG, 14p
Publication Year :
2018

Abstract

The need to understand the biodegradation of oil and chemical dispersants in Arctic marine environments is increasing alongside growth in oil exploration and transport in the region. We chemically quantified biodegradation and abiotic losses of crude oil and Corexit 9500, when present separately, in incubations of Arctic seawater and identified microorganisms potentially involved in biodegradation of these substrates based on shifts in bacterial community structure (16S rRNA genes) and abundance of biodegradation genes (GeoChip 5.0 microarray). Incubations were performed over 28-day time courses using surface seawater collected from near-shore and offshore locations in the Chukchi Sea. Within 28 days, the indigenous microbial community biodegraded 36% (k = 0.010 day<superscript>-1</superscript>) and 41% (k = 0.014 day<superscript>-1</superscript>) of oil and biodegraded 77% and 33% (k = 0.015 day<superscript>-1</superscript>) of the Corexit 9500 component dioctyl sodium sulfosuccinate (DOSS) in respective near-shore and offshore incubations. Non-ionic surfactants (Span 80, Tween 80, and Tween 85) present in Corexit 9500 were non-detectable by 28 days due to a combination of abiotic losses and biodegradation. Microorganisms utilized oil and Corexit 9500 as growth substrates during the incubation, with the Corexit 9500 stimulating more extensive growth than oil within 28 days. Taxa known to include oil-degrading bacteria (e.g., Oleispira , Polaribacter , and Colwellia) and some oil biodegradation genes (e.g., alkB , nagG , and pchCF) increased in relative abundance in response to both oil and Corexit 9500. These results increase our understanding of oil and dispersant biodegradation in the Arctic and suggest that some bacteria may be capable of biodegrading both oil and Corexit 9500. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
MARINE pollution
PETROLEUM

Details

Language :
English
ISSN :
1664302X
Database :
Complementary Index
Journal :
Frontiers in Microbiology
Publication Type :
Academic Journal
Accession number :
131103829
Full Text :
https://doi.org/10.3389/fmicb.2018.01788