Back to Search
Start Over
Inner local spectral radius preservers.
- Source :
- Rendiconti del Circolo Matematico di Palermo (Series 2); Aug2018, Vol. 67 Issue 2, p215-225, 11p
- Publication Year :
- 2018
-
Abstract
- Let L(X)<inline-graphic></inline-graphic> be the Banach algebra of all bounded linear operators on a complex Banach space X. For an operator T∈L(X)<inline-graphic></inline-graphic>, let ιT(x)<inline-graphic></inline-graphic> denote the inner local spectral radius of T at any vector x in X. We characterize maps ϕ<inline-graphic></inline-graphic> (not necessarily linear nor surjective) on L(X)<inline-graphic></inline-graphic> which satisfy ιT-S(x)=0ifandonlyifιϕ(T)-ϕ(S)(x)=0<graphic></graphic>for every x∈X<inline-graphic></inline-graphic> and T,S∈L(X)<inline-graphic></inline-graphic>. We also describe surjective linear maps ϕ<inline-graphic></inline-graphic> on L(X)<inline-graphic></inline-graphic> for which ϕ(I)<inline-graphic></inline-graphic> is invertible and either ιT(x)=0⟹ιϕ(T)(x)=0<graphic></graphic>for every x∈X<inline-graphic></inline-graphic> and T∈L(X)<inline-graphic></inline-graphic>, or ιϕ(T)(x)=0⟹ιT(x)=0<graphic></graphic>for every x∈X<inline-graphic></inline-graphic> and T∈L(X)<inline-graphic></inline-graphic>. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0009725X
- Volume :
- 67
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Rendiconti del Circolo Matematico di Palermo (Series 2)
- Publication Type :
- Academic Journal
- Accession number :
- 130917914
- Full Text :
- https://doi.org/10.1007/s12215-017-0308-8