Back to Search Start Over

流冰对引水隧洞撞击破坏力学特性数值分析与验证.

Authors :
贡 力
李雅娴
靳春玲
Source :
Transactions of the Chinese Society of Agricultural Engineering; 2018, Vol. 34 Issue 13, p144-151, 8p
Publication Year :
2018

Abstract

In high latitude region of western China, the environment is in harsh condition that it is cold and dry in winter and has long ice period, which causes many water resource problems. In order to relieve the serious water shortage condition in cold and dry region, a large number of long distance water diversion projects were established to improve the water resource condition, such as increasing farm irrigation, human and animal drinking. While the ice damage occurs frequently under severe ice conditions in cold and dry region, especially in ice period in winter and thawing period in spring, it is easy to form drift ice with different velocities, different plan sizes and different thicknesses, which produces different extrusion forces or impact forces to damage tunnel lining, causing project failure. The failure project could not realize the original planning and construction goal, giving rise to the water allocation pressure. The water allocation would cause water shortage which influences diversion irrigation and farming production in spring. Based on the intense researches on the collision simulation problem of the interaction between drift ice and diversion tunnel, this paper used the symmetric penalty function in the finite element contact-impact algorithm to conduct the theoretical study on collision simulation problem between drift ice and water diversion tunnel. ANSYS/LS-DYNA was adopted as the platform to establish tunnel model and drift ice model. LS-DYNA SOLVER was used as the solver to solve and analyze the damage degrees of drift ice on tunnel. The physical model tests were conducted to verify and reveal the impact damage mechanism of drift ice on diversion tunnel. The physical model was constructed by the geometric scale of 28, which is the ratio of the experiment facility to the prototype in the test. The results show that tunnel lining surface will form varying degrees of deformation and failure when the tunnel lining is impacted by the drift ice with different velocities, different plane sizes and different thicknesses. It is also discovered that the impact stress increases with the flow velocity and their relationship presents linear variation. The impact stress also increases with the drift ice’s plane size and their relationship presents nonlinear variation. The impact stress increases with the drift ice thickness when the drift ice thickness is less than 0.5 m. While the drift ice thickness is greater than 0.5 m, the maximum stress value shows little change. The relationship between drift ice’s plane size and maximum stress shows approximately linear variation. Meanwhile, the software simulation and test observation results are almost the same. The impact of drift ice on the tunnel lining would cause the deformation of lining, but the deformation has little influence on the tunnel stability. The drift ice’s long time erosion would cause the tunnel lining surface to fall off, and further break the strength and stability of the tunnel structures. The study supplies theoretical support and technical guarantee for water diversion project security in cold and dry region of western China. [ABSTRACT FROM AUTHOR]

Details

Language :
Chinese
ISSN :
10026819
Volume :
34
Issue :
13
Database :
Complementary Index
Journal :
Transactions of the Chinese Society of Agricultural Engineering
Publication Type :
Academic Journal
Accession number :
130638962
Full Text :
https://doi.org/10.11975/j.issn.1002-6819.2018.13.017