Back to Search Start Over

The neuromechanics of proleg grip release.

Authors :
Mukherjee, Ritwika
Vaughn, Samuel
Trimmer, Barry A.
Source :
Journal of Experimental Biology; Jul2018, Vol. 221 Issue 13, p1-11, 11p
Publication Year :
2018

Abstract

Because soft animals are deformable, their locomotion is particularly affected by external forces and they are expected to face challenges controlling movements in different environments and orientations.We have used the caterpillar Manduca sexta to study neuromechanical strategies of soft-bodied scansorial locomotion. Manduca locomotion critically depends on the timing of proleg grip release, which is mediated by the principal planta retractor muscle and its single motoneuron, PPR. During upright crawling, PPR firing frequency increases approximately 0.6 s before grip release but during upsidedown crawling, this activity begins significantly earlier, possibly pretensioning the muscle. Under different loading conditions the timing of PPR activity changes relative to the stance/swing cycle. PPR motor activity is greater during upside-down crawling but these frequency changes are too small to produce significant differences in muscle force. Detailed observation of the proleg tip show that it swells before the retractor muscle is activated. This small movement is correlated with the activation of more posterior body segments, suggesting that it results from indirect mechanical effects. The timing and direction of this proleg displacement implies that proleg grip release is a dynamic interplay of mechanics and active neural control. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00220949
Volume :
221
Issue :
13
Database :
Complementary Index
Journal :
Journal of Experimental Biology
Publication Type :
Academic Journal
Accession number :
130445603
Full Text :
https://doi.org/10.1242/jeb.173856