Back to Search Start Over

Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics.

Authors :
Santos, J. J.
Bailly-Grandvaux, M.
Ehret, M.
Arefiev, A. V.
Batani, D.
Beg, F. N.
Calisti, A.
Ferri, S.
Florido, R.
Forestier-Colleoni, P.
Fujioka, S.
Gigosos, M. A.
Giuffrida, L.
Gremillet, L.
Honrubia, J. J.
Kojima, S.
Korneev, Ph.
Law, K. F. F.
Marquès, J.-R.
Morace, A.
Source :
Physics of Plasmas; May2018, Vol. 25 Issue 5, pN.PAG-N.PAG, 12p, 1 Black and White Photograph, 2 Diagrams, 6 Graphs
Publication Year :
2018

Abstract

Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance I las λ las 2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 <italic>μ</italic>m depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1070664X
Volume :
25
Issue :
5
Database :
Complementary Index
Journal :
Physics of Plasmas
Publication Type :
Academic Journal
Accession number :
130035939
Full Text :
https://doi.org/10.1063/1.5018735