Back to Search
Start Over
Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade.
- Source :
- Journal for ImmunoTherapy of Cancer; 6/4/2018, Vol. 6 Issue 1, pN.PAG-N.PAG, 1p
- Publication Year :
- 2018
-
Abstract
- Background: TGFβ signaling plays a pleotropic role in tumor biology, promoting tumor proliferation, invasion and metastasis, and escape from immune surveillance. Inhibiting TGFβ's immune suppressive effects has become of particular interest as a way to increase the benefit of cancer immunotherapy. Here we utilized preclinical models to explore the impact of the clinical stage TGFβ pathway inhibitor, galunisertib, on anti-tumor immunity at clinically relevant doses. Results: In vitro treatment with galunisertib reversed TGFβ and regulatory T cell mediated suppression of human T cell proliferation. In vivo treatment of mice with established 4T1-LP tumors resulted in strong dose-dependent anti-tumor activity with close to 100% inhibition of tumor growth and complete regressions upon cessation of treatment in 50% of animals. This effect was CD8+ T cell dependent, and led to increased T cell numbers in treated tumors. Mice with durable regressions rejected tumor rechallenge, demonstrating the establishment of immunological memory. Consequently, mice that rejected immunogenic 4T1-LP tumors were able to resist rechallenge with poorly immunogenic 4 T1 parental cells, suggesting the development of a secondary immune response via antigen spreading as a consequence of effective tumor targeting. Combination of galunisertib with PD-L1 blockade resulted in improved tumor growth inhibition and complete regressions in colon carcinoma models, demonstrating the potential synergy when cotargeting TGFβ and PD-1/PD-L1 pathways. Combination therapy was associated with enhanced anti-tumor immune related gene expression profile that was accelerated compared to anti-PD-L1 monotherapy. Conclusions: Together these data highlight the ability of galunisertib to modulate T cell immunity and the therapeutic potential of combining galunisertib with current PD-1/L1 immunotherapy. [ABSTRACT FROM AUTHOR]
- Subjects :
- CANCER immunotherapy
TRANSFORMING growth factors
TARGETED drug delivery
Subjects
Details
- Language :
- English
- ISSN :
- 20511426
- Volume :
- 6
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Journal for ImmunoTherapy of Cancer
- Publication Type :
- Academic Journal
- Accession number :
- 129966654
- Full Text :
- https://doi.org/10.1186/s40425-018-0356-4