Back to Search
Start Over
Expression of Nrf2 Promotes Schwann Cell-Mediated Sciatic Nerve Recovery in Diabetic Peripheral Neuropathy.
- Source :
- Cellular Physiology & Biochemistry (Karger AG); May2018, Vol. 46 Issue 5, p1879-1894, 16p
- Publication Year :
- 2018
-
Abstract
- Background/Aims: High glucose-induced oxidative stress and inflammatory responses play an important role in painful diabetic neuropathy by activating the TLR4/NFκB signal pathway. Schwann cells (SCs) are integral to peripheral nerve biology, contributing to saltatory conduction along axons, nerve and axon development, and axonal regeneration. SCs provide a microenvironment favoring vascular regeneration but their low survival ratio in hyperglycemic conditions suppress the function to promote nerve growth. Nuclear factor erythroid 2-related factor 2 (Nrf2) promotes remyelination after peripheral nerve injury. The aim of this study was to identify the role of Nrf2 in SC-mediated functional recovery after sciatic nerve injury. Methods: We compared plasma inflammatory factors in diabetic patients (DN) with/without diabetic peripheral neuropathy (DPN) and assessed whether Nrf2 expression in SCs could repair peripheral nerve injury in a rat model. Nrf2, TLR4/NFκB signal pathway and apoptosis relative protein expression were detected by western blot. Apoptosis and angiogenesis were determined by immunofluorescence and tubule formation assay, respectively. Regenerated nerves were determined by transmission electron microscope. Results: Higher levels of inflammatory factors and VEGF expression were found in DPN patients. Cellular experiments indicate that Nrf2 expression inhibits hyperglycemia-induced apoptosis and promotes angiogenesis by regulating the TLR4/NFκB signal pathway. Animal experiments show that nerve conduction velocity, myelin sheath thickness, and sciatic vasa nervorum are restored with transplantation of SCs overexpressing Nrf2. Conclusions: Taken together, the high survival ratio of SCs in a DPN rat model indicates that overexpression of Nrf2 restores nerve injury. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10158987
- Volume :
- 46
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Cellular Physiology & Biochemistry (Karger AG)
- Publication Type :
- Academic Journal
- Accession number :
- 129742915
- Full Text :
- https://doi.org/10.1159/000489373