Back to Search Start Over

The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration.

Authors :
Kawauchi, Takeshi
Chihama, Kaori
Nabeshima, Vo-Ichi
Hoshino, Mikio
Source :
EMBO Journal; 8/15/2003, Vol. 22 Issue 16, p4190-4201, 12p
Publication Year :
2003

Abstract

The coordinated migration of neurons is a pivotal step for functional architectural formation of the mammalian brain. To elucidate its molecular mechanism, gene transfer by means of in utero electroporation was applied in the developing murine brain, revealing the crucial roles of Rac1, its activators, STEF/Tiam1, and its downstream molecule, c-Jun N-terminal kinase (JNK), in the cerebral cortex. Functional repression of these molecules resulted in inhibition of radial migration of neurons without affecting their proper differentiation. Interestingly, distinct morphological phenotypes were observed; suppression of Rac1 activity caused loss of the leading process, whereas repression of JNK activity did not, suggesting the complexity of the signaling cascade. In cultured neurons from the intermediate zone, activated JNK was detected along microtubules in the processes. Application of a JNK inhibitor caused irregular morphology and increased stable microtubules in processes, and decreased phosphorylation of microtubule associated protein 1B, raising a possibility of the involvement of JNK in controlling tubulin dynamics in migrating neurons. Our data thus provide important clues for understanding the intracellullar signaling machinery for cortical neuronal migration. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02614189
Volume :
22
Issue :
16
Database :
Complementary Index
Journal :
EMBO Journal
Publication Type :
Academic Journal
Accession number :
12956505
Full Text :
https://doi.org/10.1093/emboj/cdg413