Back to Search Start Over

A Linear Steady-State Treatment of Enzymatic Chains.

Authors :
Heinrich, Reinhart
Rapoport, Tom A.
Source :
European Journal of Biochemistry; Feb74 Part 2, Vol. 42 Issue 1, p89-95, 7p
Publication Year :
1974

Abstract

A theoretical analysis of linear enzymatic chains is presented. By linear approximation simple analytical solutions can be obtained for the metabolite concentrations and thc flux through the chain for steady-state conditions. The equations are greatly simplified if the common kinetic constants are expressed as functions of two parameters, i.e. the thermodynamic equilibrium constant and thc "characteristic time". Three cardinal terms are proposed for the quantitative description of enzyme systems. The first two are thc control strength and the control matrix; these indicate the dependence of the flux and the metabolite concentrations, respectively, on the kinetic properties of a given enzyme. The third is the effector strength, which defines the dependence of the velocity of an enzyme on the concentration of an effector; it expresses the importance of an effector. By linear approximation simple analytical expressions were derived for the control strength, the control matrix and the mass-action ratios. The effector strength was calculated for two cases: for a competitive inhibitor and for allosteric effectors according to the Monod (1965) model. The influence of an effector on the concentrations of the metabolites was considered. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00142956
Volume :
42
Issue :
1
Database :
Complementary Index
Journal :
European Journal of Biochemistry
Publication Type :
Academic Journal
Accession number :
12901885
Full Text :
https://doi.org/10.1111/j.1432-1033.1974.tb03318.x