Back to Search Start Over

3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection.

Authors :
Chen, Xiaozhi
Kundu, Kaustav
Zhu, Yukun
Ma, Huimin
Fidler, Sanja
Urtasun, Raquel
Source :
IEEE Transactions on Pattern Analysis & Machine Intelligence; May2018, Vol. 40 Issue 5, p1259-1272, 14p
Publication Year :
2018

Abstract

The goal of this paper is to perform 3D object detection in the context of autonomous driving. Our method aims at generating a set of high-quality 3D object proposals by exploiting stereo imagery. We formulate the problem as minimizing an energy function that encodes object size priors, placement of objects on the ground plane as well as several depth informed features that reason about free space, point cloud densities and distance to the ground. We then exploit a CNN on top of these proposals to perform object detection. In particular, we employ a convolutional neural net (CNN) that exploits context and depth information to jointly regress to 3D bounding box coordinates and object pose. Our experiments show significant performance gains over existing RGB and RGB-D object proposal methods on the challenging KITTI benchmark. When combined with the CNN, our approach outperforms all existing results in object detection and orientation estimation tasks for all three KITTI object classes. Furthermore, we experiment also with the setting where LIDAR information is available, and show that using both LIDAR and stereo leads to the best result. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
01628828
Volume :
40
Issue :
5
Database :
Complementary Index
Journal :
IEEE Transactions on Pattern Analysis & Machine Intelligence
Publication Type :
Academic Journal
Accession number :
128843537
Full Text :
https://doi.org/10.1109/TPAMI.2017.2706685