Back to Search
Start Over
On Lie nilpotent modular group algebras.
- Source :
- Communications in Algebra; 2018, Vol. 46 Issue 3, p1199-1206, 8p
- Publication Year :
- 2018
-
Abstract
- Let <italic>K</italic> be a field of characteristic <italic>p</italic>>0 and let <italic>KG</italic> be the group algebra of an arbitrary group <italic>G</italic> over <italic>K</italic>. It is known that if <italic>KG</italic> is Lie nilpotent, then its lower as well as upper Lie nilpotency index is at least <italic>p</italic>+1. The group algebras <italic>KG</italic> for which these indices are <italic>p</italic>+1 or 2<italic>p</italic> or 3<italic>p</italic>−1 or 4<italic>p</italic>−2 have already been determined. In this paper, we classify the group algebras <italic>KG</italic> for which the upper Lie nilpotency index is 5<italic>p</italic>−3, 6<italic>p</italic>−4 or 7<italic>p</italic>−5. [ABSTRACT FROM AUTHOR]
- Subjects :
- NILPOTENT Lie groups
LIE algebras
COMMUTATIVE rings
GROUP algebras
RING theory
Subjects
Details
- Language :
- English
- ISSN :
- 00927872
- Volume :
- 46
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Communications in Algebra
- Publication Type :
- Academic Journal
- Accession number :
- 128734548
- Full Text :
- https://doi.org/10.1080/00927872.2017.1339059