Back to Search
Start Over
Third power associative, antiflexible rings satisfying (<italic>a</italic>,<italic>b</italic>,<italic>ac</italic>) = <italic>a</italic>(<italic>a</italic>,<italic>b</italic>,<italic>c</italic>).
- Source :
- Communications in Algebra; 2018, Vol. 46 Issue 6, p2582-2588, 7p
- Publication Year :
- 2018
-
Abstract
- In this paper, we study third power associative, antiflexible rings satisfying the identity (<italic>a</italic>,<italic>b</italic>,<italic>ac</italic>) = <italic>a</italic>(<italic>a</italic>,<italic>b</italic>,<italic>c</italic>). We prove that third power associative, antiflexible rings satisfying the identity (<italic>a</italic>,<italic>b</italic>,<italic>ac</italic>) = <italic>a</italic>(<italic>a</italic>,<italic>b</italic>,<italic>c</italic>) with characteristic ≠2,3 are associative of degree 5. As a consequence of this result, we prove that a third power associative semiprime antiflexible ring satisfying the identity (<italic>a</italic>,<italic>b</italic>,<italic>ac</italic>) = <italic>a</italic>(<italic>a</italic>,<italic>b</italic>,<italic>c</italic>) is associative. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00927872
- Volume :
- 46
- Issue :
- 6
- Database :
- Complementary Index
- Journal :
- Communications in Algebra
- Publication Type :
- Academic Journal
- Accession number :
- 128618023
- Full Text :
- https://doi.org/10.1080/00927872.2017.1392544