Back to Search Start Over

Third power associative, antiflexible rings satisfying (<italic>a</italic>,<italic>b</italic>,<italic>ac</italic>) = <italic>a</italic>(<italic>a</italic>,<italic>b</italic>,<italic>c</italic>).

Authors :
Samanta, Dhabalendu
Hentzel, Irvin Roy
Source :
Communications in Algebra; 2018, Vol. 46 Issue 6, p2582-2588, 7p
Publication Year :
2018

Abstract

In this paper, we study third power associative, antiflexible rings satisfying the identity (&lt;italic&gt;a&lt;/italic&gt;,&lt;italic&gt;b&lt;/italic&gt;,&lt;italic&gt;ac&lt;/italic&gt;) = &lt;italic&gt;a&lt;/italic&gt;(&lt;italic&gt;a&lt;/italic&gt;,&lt;italic&gt;b&lt;/italic&gt;,&lt;italic&gt;c&lt;/italic&gt;). We prove that third power associative, antiflexible rings satisfying the identity (&lt;italic&gt;a&lt;/italic&gt;,&lt;italic&gt;b&lt;/italic&gt;,&lt;italic&gt;ac&lt;/italic&gt;) = &lt;italic&gt;a&lt;/italic&gt;(&lt;italic&gt;a&lt;/italic&gt;,&lt;italic&gt;b&lt;/italic&gt;,&lt;italic&gt;c&lt;/italic&gt;) with characteristic ≠2,3 are associative of degree 5. As a consequence of this result, we prove that a third power associative semiprime antiflexible ring satisfying the identity (&lt;italic&gt;a&lt;/italic&gt;,&lt;italic&gt;b&lt;/italic&gt;,&lt;italic&gt;ac&lt;/italic&gt;) = &lt;italic&gt;a&lt;/italic&gt;(&lt;italic&gt;a&lt;/italic&gt;,&lt;italic&gt;b&lt;/italic&gt;,&lt;italic&gt;c&lt;/italic&gt;) is associative. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00927872
Volume :
46
Issue :
6
Database :
Complementary Index
Journal :
Communications in Algebra
Publication Type :
Academic Journal
Accession number :
128618023
Full Text :
https://doi.org/10.1080/00927872.2017.1392544