Back to Search Start Over

Embeddings of spherical homogeneous spaces in characteristic <italic>p</italic>.

Authors :
Tange, Rudolf
Source :
Mathematische Zeitschrift; Feb2018, Vol. 288 Issue 1/2, p491-508, 18p
Publication Year :
2018

Abstract

Let &lt;italic&gt;G&lt;/italic&gt; be a reductive group over an algebraically closed field of characteristic p&gt;0&lt;inline-graphic&gt;&lt;/inline-graphic&gt;. We study properties of embeddings of spherical homogeneous &lt;italic&gt;G&lt;/italic&gt;-spaces. We look at Frobenius splittings, canonical or by a (p-1)&lt;inline-graphic&gt;&lt;/inline-graphic&gt;-th power, compatible with certain subvarieties. We show the existence of rational &lt;italic&gt;G&lt;/italic&gt;-equivariant resolutions by toroidal embeddings, and give results about cohomology vanishing and surjectivity of restriction maps of global sections of line bundles. We show that the class of homogeneous spaces for which our results hold contains the symmetric homogeneous spaces in characteristic ≠2&lt;inline-graphic&gt;&lt;/inline-graphic&gt; and is closed under parabolic induction. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00255874
Volume :
288
Issue :
1/2
Database :
Complementary Index
Journal :
Mathematische Zeitschrift
Publication Type :
Academic Journal
Accession number :
128462503
Full Text :
https://doi.org/10.1007/s00209-017-1897-9