Back to Search
Start Over
Exploring the Long-Term Reanalysis of Precipitation and the Contribution of Bias Correction to the Reduction of Uncertainty over South Korea: A Composite Gamma-Pareto Distribution Approach to the Bias Correction.
- Source :
- Hydrology & Earth System Sciences Discussions; 2018, p1-53, 53p
- Publication Year :
- 2018
-
Abstract
- The long-term record of precipitation data plays an important role in climate impact studies. The local observation is often considered to be <q>the truth</q> in regional-scale analyses, but the long-term meteorological record for a given catchment is very limited. Recently, ERA-20c, a century-long reanalysis of the data has been published by the European Centre for Medium-Range Weather Forecasts (ECMWF), which includes daily precipitation over the whole 20<superscript>th</superscript> century with high spatial resolution of 0.125° x 0.125°. Preliminary studies have already indicated that the ERA-20c can reproduce the mean reasonably well, but rainfall intensity was underestimated and wet-day frequency was overestimated. The primary focus of this study was to expand our sample size significantly for extreme rainfall analysis. Thus, we first adopted a relatively simple approach to adjust the frequency of wet-days by imposing an optimal lower threshold. We found that the systematic errors are fairly well captured by the conventional quantile mapping method with a gamma distribution, but the extremes in daily precipitation are still somewhat underestimated. In such a context, we introduced a quantile mapping approach based on a composite distribution of a generalized Pareto distribution for the upper tail (e.g. 95<superscript>th</superscript> and 99<superscript>th</superscript> percentile), and a gamma distribution for the interior part of the distribution. The proposed composite distributions provide a significant reduction of the biases compared with that of the conventional method for the extremes. We suggest a new interpolation method based on the parameter contour map for bias correction in ungauged catchments. The strength of this approach is that one can easily produce the bias-corrected daily precipitation in ungauged or poorly gauged catchments. A comparison of the corrected datasets using contour maps shows that the proposed modelling scheme can reliably reduce the systematic bias at a grid point that is not used in the process of parameter estimation. In particular, the contour map with the 99<superscript>th</superscript> percentile shows a more accurate representation of the observed daily rainfall than other combinations. The findings in this study suggest that the proposed approach can provide a useful alternative to readers who consider the bias correction of a regional-scale modelled data with a limited network of rain gauges. Although the study has been carried out in South Korea, the methodology has its potential to be applied in other parts of the world. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 18122108
- Database :
- Complementary Index
- Journal :
- Hydrology & Earth System Sciences Discussions
- Publication Type :
- Academic Journal
- Accession number :
- 128249990
- Full Text :
- https://doi.org/10.5194/hess-2018-36