Back to Search Start Over

Association of improved oxidative stress tolerance and alleviation of glucose repression with superior xylose-utilization capability by a natural isolate of <italic>Saccharomyces cerevisiae</italic>.

Authors :
Cheng, Cheng
Tang, Rui-Qi
Xiong, Liang
Hector, Ronald E.
Bai, Feng-Wu
Zhao, Xin-Qing
Source :
Biotechnology for Biofuels; 2/5/2018, Vol. 11 Issue 1, p1-1, 1p
Publication Year :
2018

Abstract

Background: &lt;italic&gt;Saccharomyces cerevisiae&lt;/italic&gt; wild strains generally have poor xylose-utilization capability, which is a major barrier for efficient bioconversion of lignocellulosic biomass. Laboratory adaption is commonly used to enhance xylose utilization of recombinant &lt;italic&gt;S. cerevisiae&lt;/italic&gt;. Apparently, yeast cells could remodel the metabolic network for xylose metabolism. However, it still remains unclear why natural isolates of &lt;italic&gt;S. cerevisiae&lt;/italic&gt; poorly utilize xylose. Here, we analyzed a unique &lt;italic&gt;S. cerevisiae&lt;/italic&gt; natural isolate YB-2625 which has superior xylose metabolism capability in the presence of mixed-sugar. Comparative transcriptomic analysis was performed using &lt;italic&gt;S. cerevisiae&lt;/italic&gt; YB-2625 grown in a mixture of glucose and xylose, and the model yeast strain S288C served as a control. Global gene transcription was compared at both the early mixed-sugar utilization stage and the latter xylose-utilization stage. Results: Genes involved in endogenous xylose-assimilation (&lt;italic&gt;XYL2&lt;/italic&gt; and &lt;italic&gt;XKS1&lt;/italic&gt;), gluconeogenesis, and TCA cycle showed higher transcription levels in &lt;italic&gt;S. cerevisiae&lt;/italic&gt; YB-2625 at the xylose-utilization stage, when compared to the reference strain. On the other hand, transcription factor encoding genes involved in regulation of glucose repression (&lt;italic&gt;MIG1&lt;/italic&gt;, &lt;italic&gt;MIG2&lt;/italic&gt;, and &lt;italic&gt;MIG3&lt;/italic&gt;) as well as &lt;italic&gt;HXK2&lt;/italic&gt; displayed decreased transcriptional levels in YB-2625, suggesting the alleviation of glucose repression of &lt;italic&gt;S. cerevisiae&lt;/italic&gt; YB-2625. Notably, genes encoding antioxidant enzymes (&lt;italic&gt;CTT1&lt;/italic&gt;, &lt;italic&gt;CTA1&lt;/italic&gt;, &lt;italic&gt;SOD2,&lt;/italic&gt; and &lt;italic&gt;PRX1&lt;/italic&gt;) showed higher transcription levels in &lt;italic&gt;S. cerevisiae&lt;/italic&gt; YB-2625 in the xylose-utilization stage than that of the reference strain. Consistently, catalase activity of YB-2625 was 1.9-fold higher than that of &lt;italic&gt;S. cerevisiae&lt;/italic&gt; S288C during the xylose-utilization stage. As a result, intracellular reactive oxygen species levels of &lt;italic&gt;S. cerevisiae&lt;/italic&gt; YB-2625 were 43.3 and 58.6% lower than that of S288C at both sugar utilization stages. Overexpression of &lt;italic&gt;CTT1&lt;/italic&gt; and &lt;italic&gt;PRX1&lt;/italic&gt; in the recombinant strain &lt;italic&gt;S. cerevisiae&lt;/italic&gt; YRH396 deriving from &lt;italic&gt;S. cerevisiae&lt;/italic&gt; YB-2625 increased cell growth when xylose was used as the sole carbon source, leading to 13.5 and 18.1%, respectively, more xylose consumption. Conclusions: Enhanced oxidative stress tolerance and relief of glucose repression are proposed to be two major mechanisms for superior xylose utilization by &lt;italic&gt;S. cerevisiae&lt;/italic&gt; YB-2625. The present study provides insights into the innate regulatory mechanisms underlying xylose utilization in wild-type &lt;italic&gt;S. cerevisiae&lt;/italic&gt;, which benefits the rapid development of robust yeast strains for lignocellulosic biorefineries. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17546834
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Biotechnology for Biofuels
Publication Type :
Academic Journal
Accession number :
127809262
Full Text :
https://doi.org/10.1186/s13068-018-1018-y