Back to Search Start Over

Chondroitin Sulfate Inhibits Monocyte Chemoattractant Protein-1 Release From 3T3-L1 Adipocytes: A New Treatment Opportunity for Obesity-Related Inflammation?

Authors :
Stabler, Thomas V.
Montell, Eulàlia
Vergés, Josep
Huebner, Janet L.
Kraus, Virginia Byers
Source :
Biomarker Insights; Jan2017, Issue 12, p1-4, 4p
Publication Year :
2017

Abstract

Monocyte chemoattractant protein-1 (MCP-1) overproduction from inflamed adipose tissue is a major contributor to obesity-related metabolic syndromes. 3T3-L1 embryonic fibroblasts were cultured and differentiated into adipocytes using an established protocol. Adipocytes were treated with lipopolysaccharide (LPS) to induce inflammation and thus MCP-1 release. At the same time, varying concentrations of chondroitin sulfate (CS) were added in a physiologically relevant range (10-200 μg/mL) to determine its impact on MCP-1 release. Chondroitin sulfate, a natural glycosaminoglycan of connective tissue including the cartilage extracellular matrix, was chosen on the basis of our previous studies demonstrating its anti-inflammatory effect on macrophages. Because the main action of MCP-1 is to induce monocyte migration, cultured THP-1 monocytes were used to test whether CS at the highest physiologically relevant concentration could inhibit cell migration induced by human recombinant MCP-1. Chondroitin sulfate (100-200 μg/mL) inhibited MCP-1 release from inflamed adipocytes in a dosedependent manner (P < .01, 95% confidence interval [CI]: −5.89 to −3.858 at 100 μg/mL and P < .001, 95% CI: −6.028 to −3.996 at 200 μg/mL) but had no effect on MCP-1-driven chemotaxis of THP-1 monocytes. In summary, CS could be expected to reduce macrophage nfiltration into adipose tissue by reduction in adipocyte expression and release of MCP-1 and as such might reduce adipose tissue inflammation in response to pro-inflammatory stimuli such as LPS, now increasingly recognized to be relevant in vivo. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
11772719
Issue :
12
Database :
Complementary Index
Journal :
Biomarker Insights
Publication Type :
Academic Journal
Accession number :
127558209
Full Text :
https://doi.org/10.1177/1177271917726964