Back to Search
Start Over
Dose-Rate Effects on the Total-Ionizing-Dose Response of Piezoresistive Micromachined Cantilevers.
- Source :
- IEEE Transactions on Nuclear Science; Jan2018, Vol. 65 Issue 1, p58-63, 6p
- Publication Year :
- 2018
-
Abstract
- Total-ionizing-dose-induced resonance frequency shifts in piezoresistive micromachined cantilevers are experimentally shown to be dose-rate dependent. Devices were irradiated to 1 Mrad(SiO2) at rates from 5.4 to 30.3 krad(SiO2)/min, with lower rate exposures producing up to four-times more negative frequency shifts than higher rate exposures. Devices that were hydrogenated in a steam bath for 1 h showed shifts similar to those of control (not hydrogenated) devices at higher dose rates, and larger shifts than control devices at lower rates. All devices recovered to levels close to preirradiation after several hours of post-irradiation annealing. The dose-rate dependence is attributed to differences in carrier concentration caused by varying efficiencies of the depassivation of boron by hydrogen at higher and lower dose rates and/or surface charging effects, and the subsequent differences in Young’s modulus that occur as a result. Many of these processes are similar to effects that lead to ELDRS in linear bipolar transistors, emphasizing the need to include low-dose-rate testing of microelectromechanical systems devices when considering them for use in space systems. [ABSTRACT FROM PUBLISHER]
Details
- Language :
- English
- ISSN :
- 00189499
- Volume :
- 65
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Nuclear Science
- Publication Type :
- Academic Journal
- Accession number :
- 127490790
- Full Text :
- https://doi.org/10.1109/TNS.2017.2760242