Back to Search Start Over

Unravelling external perturbation effects on the optical phonon response of graphene.

Authors :
Bendiab, Nedjma
Renard, Julien
Schwarz, Cornelia
Reserbat‐Plantey, Antoine
Djevahirdjian, Léo
Bouchiat, Vincent
Coraux, Johann
Marty, Laëtitia
Source :
Journal of Raman Spectroscopy; Jan2018, Vol. 49 Issue 1, p130-145, 16p
Publication Year :
2018

Abstract

Raman spectroscopy is a powerful and nondestructive probe that demonstrates its efficiency in revealing the physical properties of low‐dimensional sp<superscript>2</superscript> carbon systems. It gives access to the number of layers, the quality and the nature of defects of all carbon allotropes, but also to the understanding of the influence of perturbations such as strain and/or doping. In this paper, we review the state of the art regarding the effect of external perturbations on the optical phonons of graphene. We describe how doping can tune the unusual electron–phonon coupling in graphene and thus modify not only the resonance conditions but also the phonon intensities thanks to quantum interferences. We also review the impact of strain on optical phonons and how one can disentangle strain and doping thanks to optical phonons. Last, implementations of this field to strain engineering or to graphene‐based mechanical resonators will be presented. Copyright © 2018 John Wiley & Sons, Ltd. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03770486
Volume :
49
Issue :
1
Database :
Complementary Index
Journal :
Journal of Raman Spectroscopy
Publication Type :
Academic Journal
Accession number :
127444233
Full Text :
https://doi.org/10.1002/jrs.5267