Back to Search
Start Over
Functional Topology of Evolving Urban Drainage Networks.
- Source :
- Water Resources Research; Nov2017, Vol. 53 Issue 11, p8966-8979, 14p
- Publication Year :
- 2017
-
Abstract
- We investigated the scaling and topology of engineered urban drainage networks (UDNs) in two cities, and further examined UDN evolution over decades. UDN scaling was analyzed using two power law scaling characteristics widely employed for river networks: (1) Hack's law of length (L)-area (A) [L ∞ A<superscript>h</superscript>] and (2) exceedance probability distribution of upstream contributing area (δ) [P(A ≥ δ(~ aδ2E]. For the smallest UDNs (<2 km²), length-area scales linearly (h ~ 1), but power law scaling (h ~ 0.6) emerges as the UDNs grow. While P(A ≥ δ(plots for river networks are abruptly truncated, those for UDNs display exponential tempering [P(A ≥ δ(5aδ2Eexp (2cδ(]. The tempering parameter c decreases as the UDNs grow, implying that the distribution evolves in time to resemble those for river networks. However, the power law exponent E for large UDNs tends to be greater than the range reported for river networks. Differences in generative processes and engineering design constraints contribute to observed differences in the evolution of UDNs and river networks, including subnet heterogeneity and nonrandom branching. [ABSTRACT FROM AUTHOR]
- Subjects :
- DRAINAGE
WATER supply
PROBABILITY theory
Subjects
Details
- Language :
- English
- ISSN :
- 00431397
- Volume :
- 53
- Issue :
- 11
- Database :
- Complementary Index
- Journal :
- Water Resources Research
- Publication Type :
- Academic Journal
- Accession number :
- 127020378
- Full Text :
- https://doi.org/10.1002/2017WR021555