Back to Search Start Over

Statistical Image Properties in Large Subsets of Traditional Art, Bad Art, and Abstract Art.

Authors :
Redies, Christoph
Brachmann, Anselm
Source :
Frontiers in Neuroscience; 10/25/2017, p1-15, 15p
Publication Year :
2017

Abstract

Several statistical image properties have been associated with large subsets of traditional visual artworks. Here, we investigate some of these properties in three categories of art that differ in artistic claim and prestige: (1) Traditional art of different cultural origin from established museums and art collections (oil paintings and graphic art of Western provenance, Islamic book illustration and Chinese paintings), (2) Bad Art from two museums that collect contemporary artworks of lesser importance (© Museum Of Bad Art [MOBA], Somerville, and Official Bad Art Museum of Art [OBAMA], Seattle), and (3) twentieth century abstract art of Western provenance from two prestigious museums (Tate Gallery and Kunstsammlung Nordrhein-Westfalen). We measured the following four statistical image properties: the fractal dimension (a measure relating to subjective complexity); self-similarity (ameasure of howmuch the sections of an image resemble the image as a whole), 1st-order entropy of edge orientations (a measure of how uniformly different orientations are represented in an image); and 2nd-order entropy of edge orientations (a measure of how independent edge orientations are across an image). As shown previously, traditional artworks of different styles share similar values for these measures. The values for Bad Art and twentieth century abstract art show a considerable overlap with those of traditional art, but we also identified numerous examples of Bad Art and abstract art that deviate from traditional art. By measuring statistical image properties, we quantify such differences in image composition for the first time. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
ART
CHINESE painting

Details

Language :
English
ISSN :
16624548
Database :
Complementary Index
Journal :
Frontiers in Neuroscience
Publication Type :
Academic Journal
Accession number :
125900399
Full Text :
https://doi.org/10.3389/fnins.2017.00593