Back to Search Start Over

Generic nature of long-range repulsion mechanism on a bulk insulator?

Authors :
Neff, J. L.
Richter, A.
Söngen, H.
Venturini, C.
Gourdon, A.
Bechstein, R.
Kühnle, A.
Source :
Faraday Discussions; 2017, Vol. 204, p419-428, 10p
Publication Year :
2017

Abstract

Dynamic atomic force microscopy measurements are reported that provide evidence for the presence of long-range repulsion in molecular self-assembly on a bulk insulator surface. We present the structures formed from four different benzoic acid derivatives on the (10.4) cleavage plane of calcite kept in ultra-high vacuum. These molecules have in common that they self-assemble into molecular stripes when deposited onto the surface held at room temperature. For all molecules tested, a detailed analysis of the stripe-to-stripe distance distribution reveals a clear deviation from what would be expected for randomly placed, non-interacting stripes (i.e., geometric distribution). When excluding kinetic effects during growth, this result gives evidence for a long-range repulsion mechanism acting during the assembly of these stripes. The fact that this finding is robust against changes in the molecular structure indicates a generic nature of the observed mechanism, implying a ubiquitous origin such as electrostatic repulsion. Finally, we discuss parameters that might affect the unambiguous observation of this generic repulsion under specific experimental conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13596640
Volume :
204
Database :
Complementary Index
Journal :
Faraday Discussions
Publication Type :
Academic Journal
Accession number :
125881978
Full Text :
https://doi.org/10.1039/c7fd00089h