Back to Search Start Over

Dynamic Resource Allocation for Virtualized Wireless Networks in Massive-MIMO-Aided and Fronthaul-Limited C-RAN.

Authors :
Parsaeefard, Saeedeh
Dawadi, Rajesh
Derakhshani, Mahsa
Le-Ngoc, Tho
Baghani, Mina
Source :
IEEE Transactions on Vehicular Technology; Oct2017, Vol. 66 Issue 10, p9512-9520, 9p
Publication Year :
2017

Abstract

This paper considers the uplink dynamic resource allocation in a cloud radio access network (C-RAN) serving users belonging to different service providers (called slices) to form virtualized wireless networks (VWN). In particular, the C-RAN supports a pool of base-station (BS) baseband units (BBUs), which are connected to BS radio remote heads (RRHs) equipped with massive massive multiple input multiple output (MIMO), via fronthaul links with limited capacity. Assuming that each user can be assigned to a single RRH–BBU pair, we formulate a resource allocation problem aiming to maximize the total system rate, constrained on the minimum rates required by the slices and the maximum number of antennas and power allocated to each user. The effects of pilot contamination error on the VWN performance are investigated and pilot duration is considered as a new optimization variable in resource allocation. This problem is inherently nonconvex, NP-hard and, thus, computationally inefficient. By applying the successive convex approximation and complementary geometric programming approach, we propose a two-step iterative algorithm: one to adjust the RRH, BBU, and fronthaul parameters, and the other for power and antenna allocation to users. Simulation results illustrate the performance of the developed algorithm for VWNs in a massive-MIMO-aided and fronthaul-limited C-RAN, and demonstrate the effects of imperfect channel state information estimation due to pilot contamination error, and the optimal pilot duration. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
00189545
Volume :
66
Issue :
10
Database :
Complementary Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
125719617
Full Text :
https://doi.org/10.1109/TVT.2017.2712669