Back to Search
Start Over
Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli.
- Source :
- Journal of Antimicrobial Chemotherapy (JAC); Oct2017, Vol. 72 Issue 10, p2729-2736, 8p
- Publication Year :
- 2017
-
Abstract
- <bold>Objectives: </bold>Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958.<bold>Methods: </bold>Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost.<bold>Results: </bold>A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B.<bold>Conclusions: </bold>This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli. [ABSTRACT FROM AUTHOR]
- Subjects :
- DRUG resistance in bacteria
ESCHERICHIA coli
POLYMYXIN B
GRAM-negative bacteria
COLISTIN
GENETIC code
ANTIBIOTICS
BACTERIAL proteins
CHROMOSOMES
DNA
DRUG resistance in microorganisms
GENETICS
GENOMES
GENETIC mutation
POLYMERASE chain reaction
TRANSCRIPTION factors
REVERSE transcriptase polymerase chain reaction
SEQUENCE analysis
PHARMACODYNAMICS
Subjects
Details
- Language :
- English
- ISSN :
- 03057453
- Volume :
- 72
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Journal of Antimicrobial Chemotherapy (JAC)
- Publication Type :
- Academic Journal
- Accession number :
- 125316300
- Full Text :
- https://doi.org/10.1093/jac/dkx204