Back to Search
Start Over
The hypertree poset and the l 2-Betti numbers of the motion group of the trivial link.
- Source :
- Mathematische Annalen; Apr2004, Vol. 328 Issue 4, p633-652, 20p
- Publication Year :
- 2004
-
Abstract
- We give explicit formulae for the Euler characteristic and l <superscript>2</superscript>-cohomology of the group of motions of the trivial link, or isomorphically the group of free group automorphisms that send each standard generator to a conjugate of itself. The method is primarily combinatorial and ultimately relies on a computation of the Möbius function for the poset of labelled hypertrees. [ABSTRACT FROM AUTHOR]
- Subjects :
- TREE graphs
AUTOMORPHISMS
HOMOLOGY theory
GRAPH theory
Subjects
Details
- Language :
- English
- ISSN :
- 00255831
- Volume :
- 328
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Mathematische Annalen
- Publication Type :
- Academic Journal
- Accession number :
- 12492411
- Full Text :
- https://doi.org/10.1007/s00208-003-0499-5