Back to Search Start Over

The hypertree poset and the l 2-Betti numbers of the motion group of the trivial link.

Authors :
Jon McCammond
John Meier
Source :
Mathematische Annalen; Apr2004, Vol. 328 Issue 4, p633-652, 20p
Publication Year :
2004

Abstract

We give explicit formulae for the Euler characteristic and l <superscript>2</superscript>-cohomology of the group of motions of the trivial link, or isomorphically the group of free group automorphisms that send each standard generator to a conjugate of itself. The method is primarily combinatorial and ultimately relies on a computation of the Möbius function for the poset of labelled hypertrees. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00255831
Volume :
328
Issue :
4
Database :
Complementary Index
Journal :
Mathematische Annalen
Publication Type :
Academic Journal
Accession number :
12492411
Full Text :
https://doi.org/10.1007/s00208-003-0499-5