Back to Search
Start Over
A PERFORMANCE COMPARISON OF FEATURE DETECTORS FOR PLANETARY ROVER MAPPING AND LOCALIZATION.
- Source :
- International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences; 2017, Vol. 42 Issue 3-W1, p149-154, 6p
- Publication Year :
- 2017
-
Abstract
- Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less sensitive to changes of image taken at adjacent locations. [ABSTRACT FROM AUTHOR]
- Subjects :
- DETECTORS
COMPUTER vision
ROBOTICS
Subjects
Details
- Language :
- English
- ISSN :
- 16821750
- Volume :
- 42
- Issue :
- 3-W1
- Database :
- Complementary Index
- Journal :
- International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 124479767
- Full Text :
- https://doi.org/10.5194/isprs-archives-XLII-3-W1-149-2017