Back to Search Start Over

Protective Effects of MicroRNA-126 on Human Cardiac Microvascular Endothelial Cells Against Hypoxia/Reoxygenation-Induced Injury and Inflammatory Response by Activating PI3K/Akt/eNOS Signaling Pathway.

Authors :
Yang, Hong-Hui
Chen, Yan
Gao, Chuan-Yu
Cui, Zhen-Tian
Yao, Jian-Min
Source :
Cellular Physiology & Biochemistry (Karger AG); Jul2017, Vol. 42 Issue 2, p506-518, 13p
Publication Year :
2017

Abstract

Objective: This study explored the protective effects of the microRNA-126 (miR-126)- mediated PI3K/Akt/eNOS signaling pathway on human cardiac microvascular endothelial cells (HCMECs) against hypoxia/reoxygenation (H/R)-induced injury and the inflammatory response. Methods: Untreated HCMECs were selected for the control group. After H/R treatment and cell transfection, the HCMECs were assigned to the H/R, miR-126 mimic, mimicnegative control (NC), miR-126 inhibitor, inhibitor-NC, wortmannin (an inhibitor of PI3K) and miR-126 mimic + wortmannin groups. Super oxide dismutase (SOD), nitric oxide (NO), vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) were measured utilizing commercial kits. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to detect miR-126 expression and the mRNA and protein expression of inflammatory factors. Western blotting was used to determine the expression of key members in the PI3K/Akt/eNOS signaling pathway. ACCK- 8 assay and flow cytometry were employed to examine cell proliferation and apoptosis, respectively. The angiogenic ability in each group was detected by the lumen formation test. Results: Compared to the control group, p/t-PI3K, p/t-Akt and p/t-eNOS expression, NO, VEGF and SOD levels, cell proliferation and in vitro lumen formation ability were decreased, while the ROS content, interleukin (IL)-6, IL-10 and tumor necrosis factor (TNF)-α expression and cell apoptosis were significantly increased in the H/R, mimic-NC, miR-126 inhibitor, inhibitor- NC, wortmannin and miR-126 mimic + wortmannin groups. Additionally, in comparison with the H/R group, the miR-126 mimic group had elevated p/t-PI3K, p/t-Akt and p/t-eNOS expression, increased NO, VEGF and SOD contents, and strengthened cell proliferation and lumen formation abilities but also exhibited decreased ROS content, reduced IL-6, IL-10 and TNF-α expressions, and weakened cell apoptosis, while the miR-126 inhibitor and wortmannin group exhibited the opposite results. Furthermore, decreased p/t-PI3K, p/t-Akt and p/t-eNOS expressions, decreased NO, VEGF and SOD contents, cell proliferation and lumen formation abilities, as well as increased ROS content, increased IL-6, IL-10 and TNF-α expression, and increased cell apoptosis were observed in the miR-126 mimic + wortmannin group compared to themiR-126 mimic group. Conclusions: These findings indicated that miR-126 protects HCMECs from H/R-induced injury and inflammatory response by activating the PI3K/Akt/ eNOS signaling pathway. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10158987
Volume :
42
Issue :
2
Database :
Complementary Index
Journal :
Cellular Physiology & Biochemistry (Karger AG)
Publication Type :
Academic Journal
Accession number :
124107369
Full Text :
https://doi.org/10.1159/000477597