Back to Search
Start Over
Modeling and Identification of Nonlinear Systems: A Review of the Multimodel Approach—Part 1.
- Source :
- IEEE Transactions on Systems, Man & Cybernetics. Systems; Jul2017, Vol. 47 Issue 7, p1149-1159, 11p
- Publication Year :
- 2017
-
Abstract
- The efficacy of the multimodel framework (MMF) in modeling and identification of complex, nonlinear, and uncertain systems has been widely recognized in the literature owing to its simplicity, transparency, and mathematical tractability, allowing the use of well-known modeling analysis and control design techniques. The approach proved to be effective in addressing some of the shortcomings of other modeling techniques such as those based on a single nonlinear autoregressive network with exogenous inputs model or neural networks. A great number of researchers have contributed to this active field. Due to the significant amount of contributions and the lack of a recent survey, the review of recent developments in this field is vital. In this two-part paper, we attempt to provide a comprehensive coverage of the multimodel approach for modeling and identification of complex systems. The study contains a classification of different methods, the challenges encountered, as well as recent applications of MMF in various fields. Part 1 of this paper presents an overview of MMF for modeling and identification of nonlinear systems as well as the review of recent developments in the partitioning strategies employed. [ABSTRACT FROM AUTHOR]
- Subjects :
- NONLINEAR systems
AUTOREGRESSION (Statistics)
Subjects
Details
- Language :
- English
- ISSN :
- 21682216
- Volume :
- 47
- Issue :
- 7
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Systems, Man & Cybernetics. Systems
- Publication Type :
- Academic Journal
- Accession number :
- 123805733
- Full Text :
- https://doi.org/10.1109/TSMC.2016.2560147