Back to Search Start Over

Metabolic cost of calcification in bivalve larvae under experimental ocean acidification.

Authors :
Frieder, Christina A.
Applebaum, Scott L.
Pan, T.-C. Francis
Hedgecock, Dennis
Manahan, Donal T.
Source :
ICES Journal of Marine Science / Journal du Conseil; May/Jun2017, Vol. 74 Issue 4, p941-954, 14p
Publication Year :
2017

Abstract

Physiological increases in energy expenditure frequently occur in response to environmental stress. Although energy limitation is often invoked as a basis for decreased calcification under ocean acidification, energy-relevant measurements related to this process are scant. In this study we focus on first-shell (prodissoconch I) formation in larvae of the Pacific oyster, Crassostrea gigas. The energy cost of calcification was empirically derived to be≤1.1 μJ (ng CaCO<subscript>3</subscript>)<superscript>-1</superscript>. Regardless of the saturation state of aragonite (2.77 vs. 0.77), larvae utilize the same amount of total energy to complete first-shell formation. Even though there was a 56% reduction of shell mass and an increase in dissolution at aragonite undersaturation, first-shell formation is not energy limited because sufficient endogenous reserves are available to meet metabolic demand. Further studies were undertaken on larvae from genetic crosses of pedigreed lines to test for variance in response to aragonite undersaturation. Larval families show variation in response to ocean acidification, with loss of shell size ranging from no effect to 28%. These differences show that resilience to ocean acidification may exist among genotypes. Combined studies of bioenergetics and genetics are promising approaches for understanding climate change impacts on marine organisms that undergo calcification. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10543139
Volume :
74
Issue :
4
Database :
Complementary Index
Journal :
ICES Journal of Marine Science / Journal du Conseil
Publication Type :
Academic Journal
Accession number :
123254009
Full Text :
https://doi.org/10.1093/icesjms/fsw213