Back to Search Start Over

Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment.

Authors :
Majeski, R.
Bell, R. E.
Boyle, D. P.
Kaita, R.
Kozub, T.
LeBlanc, B. P.
Lucia, M.
Maingi, R.
Merino, E.
Raitses, Y.
Schmitt, J. C.
Allain, J. P.
Bedoya, F.
Bialek, J.
Biewer, T. M.
Canik, J. M.
Buzi, L.
Koel, B. E.
Patino, M. I.
Capece, A. M.
Source :
Physics of Plasmas; 2017, Vol. 24 Issue 5, p1-6, 6p, 1 Diagram, 8 Graphs
Publication Year :
2017

Abstract

High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 x 10<superscript>17</superscript> m<superscript>-3</superscript>, consistent with a low recycling metallic lithium boundary. Despite the high edge temperature, the core impurity content is low. Z<superscript>eff</superscript> is estimated to be ~1.2, with a very modest contribution (<0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-β, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-β is briefly described. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1070664X
Volume :
24
Issue :
5
Database :
Complementary Index
Journal :
Physics of Plasmas
Publication Type :
Academic Journal
Accession number :
122825287
Full Text :
https://doi.org/10.1063/1.4977916