Back to Search Start Over

The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue.

Authors :
Lücker, Adrien
Secomb, Timothy W.
Weber, Bruno
Jenny, Patrick
Source :
Microcirculation; Apr2017, Vol. 24 Issue 3, pn/a-N.PAG, 12p
Publication Year :
2017

Abstract

Objective Oxygen transport to parenchymal cells occurs mainly at the microvascular level and depends on convective RBC flux, which is proportional in an individual capillary to the product of capillary hematocrit and RBC velocity. This study investigates the relative influence of these two factors on tissue PO<subscript>2</subscript>. Methods A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity, and RBC flow on tissue oxygenation around capillaries. Predicted tissue PO<subscript>2</subscript> levels are compared with a detailed computational model. Results Hematocrit is shown to have a larger influence on tissue PO<subscript>2</subscript> than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained, and the discrepancies are explained. Significant dependence of MTCs on RBC velocity at low hematocrit is demonstrated. Conclusions For a given RBC flux in a capillary, the PO<subscript>2</subscript> in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing IVR to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as those that occur in functional hyperemia in the brain. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10739688
Volume :
24
Issue :
3
Database :
Complementary Index
Journal :
Microcirculation
Publication Type :
Academic Journal
Accession number :
122686211
Full Text :
https://doi.org/10.1111/micc.12337