Back to Search Start Over

Fabrication and evaluation of plasmonic light-emitting diodes with thin p-type layer and localized Ag particles embedded by ITO.

Authors :
Okada, N.
Morishita, N.
Mori, A.
Tsukada, T.
Tateishi, K.
Okamoto, K.
Tadatomo, K.
Source :
Journal of Applied Physics; 2017, Vol. 121 Issue 15, p1-7, 7p, 1 Black and White Photograph, 3 Diagrams, 10 Graphs
Publication Year :
2017

Abstract

Light-emitting diodes (LEDs) have been demonstrated with a thin p-type layer using the plasmonic effect. Optimal LED device operation was found when using a 20-nm-thick p<superscript>+</superscript>-GaN layer. Ag of different thicknesses was deposited on the thin p-type layer and annealed to form the localized Ag particles. The localized Ag particles were embedded by indium tin oxide to form a p-type electrode in the LED structure. By optimization of the plasmonic LED, the significant electroluminescence enhancement was observed when the thickness of Ag was 9.5 nm. Both upward and downward electroluminescence intensities were improved, and the external quantum efficiency was approximately double that of LEDs without the localized Ag particles. The time-resolved photoluminescence (PL) decay time for the LED with the localized Ag particles was shorter than that without the localized Ag particles. The faster PL decay time should cause the increase in internal quantum efficiency by adopting the localized Ag particles. To validate the localized surface plasmon resonance coupling effect, the absorption of the LEDs was investigated experimentally and using simulations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
121
Issue :
15
Database :
Complementary Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
122658231
Full Text :
https://doi.org/10.1063/1.4980169