Back to Search Start Over

Reusable Cellulose-Based Hydrogel Sticker Film Applied as Gate Dielectric in Paper Electrolyte-Gated Transistors.

Authors :
Cunha, Inês
Barras, Raquel
Grey, Paul
Gaspar, Diana
Fortunato, Elvira
Martins, Rodrigo
Pereira, Luís
Source :
Advanced Functional Materials; 4/25/2017, Vol. 27 Issue 16, pn/a-N.PAG, 11p
Publication Year :
2017

Abstract

A new concept for reusable eco-friendly hydrogel electrolytes based on cellulose is introduced. The reported electrolytes are designed and engineered through a simple, fast, low-cost, and eco-friendly dissolution method of microcrystalline cellulose at low temperature using an aqueous LiOH/urea solvent system. The cellulose solution is combined with carboxymethyl cellulose, followed by the regeneration and simultaneous ion incorporation. The produced free standing cellulose-based electrolyte films exhibit interesting properties for application in flexible electrochemical devices, such as biosensors or electrolyte-gated transistors (EGTs), because of their high specific capacitances (4-5 µF cm<superscript>−2</superscript>), transparency, and flexibility. Indium-gallium-zinc-oxide EGTs on glass with laminated cellulose-based hydrogel electrolytes (CHEs) as the gate dielectric are produced presenting a low working voltage (<2 V), showing an on-off current ratio ( I<subscript>on/off</subscript>) of 10<superscript>6</superscript>, a subthreshold swing lower than 0.2 V dec<superscript>−1</superscript>, and saturation mobility (μ<subscript>Sat</subscript>) reaching 26 cm<superscript>2</superscript> V<superscript>−1</superscript> s<superscript>−1</superscript>. The flexible CHE-gated transistors on paper are also demonstrated, which operate at switching frequencies up to 100 Hz. Combining the flexibility of the EGTs on paper with the reusability of the developed CHEs is a breakthrough toward biodegradable advanced functional materials allied with disposable/recyclable and low-cost electronic devices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
27
Issue :
16
Database :
Complementary Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
122637279
Full Text :
https://doi.org/10.1002/adfm.201606755