Back to Search Start Over

A SPH Implementation with Ignition and Growth and Afterburning Models for Aluminized Explosives.

Authors :
Wang, Guangyu
Liu, Guirong
Peng, Qing
De, Suvranu
Source :
International Journal of Computational Methods; Aug2017, Vol. 14 Issue 4, p-1, 15p
Publication Year :
2017

Abstract

Aluminized explosives have been applied in military industry since decades ago. Compared with ideal explosives such as TNT, HMX, RDX, aluminized explosives feature both fast detonation and slow metal combustion chemistry, generating a complex multi-phase reactive flow. Though aluminized explosives have been employed for a long time, the mechanism underneath the chemical process is still not thoroughly understood. In this paper, a smooth particle hydrodynamics (SPH) method incorporated ignition and growth model, and afterburning model has been proposed for the simulation of aluminized explosive. Ignition and growth model is currently the most popular model for the simulation of high explosives, which is capable of accurately reproducing arrival time of detonation front and pressure history of high explosives. It has been integrated in commercial software such as ANSYS-LS DYNA. In addition, an afterburning model has been integrated in the SPH code to simulate the combustion of aluminum particles. Simulation is compared with experiment and good agreement is observed. The proposed mathematical model can be used to study the detonation of aluminized explosives. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02198762
Volume :
14
Issue :
4
Database :
Complementary Index
Journal :
International Journal of Computational Methods
Publication Type :
Academic Journal
Accession number :
122559540
Full Text :
https://doi.org/10.1142/S0219876217500463